Extended Euclidean algorithm

E-OLYMP [1155. Euclid Problem](https://www.e-olymp.com/en/problems/1155) From Euclid it is known that for any positive integers *a* and *b* there exist such integers *x* and *y* that $ax + by = d$, where *d* is the greatest common divisor of *a* and *b*. The problem is to find for given *a* and *b* corresponding *x*, *y* and *d*.

► Consider the equation: $7x + 9y = 1$, where GCD(7, 9) = 1. You must find such pair (x, y) for which $|x| + |y|$ is minimal. The answer will be $(x, y) = (4, -3)$, because 7 $*$ 4 $+9 * (-3) = 1.$

Let for positive integers *a* and *b* $(a > b)$ we know the value of $d = \text{GCD}(b, a \mod b),$ and also the numbers *x*' and *y*', for which $d = x' * b + y' * (a \mod b)$

Since
$$
a \mod b = a - \left\lfloor \frac{a}{b} \right\rfloor * b
$$
, then

$$
d = x' * b + y' * (a - \left\lfloor \frac{a}{b} \right\rfloor * b) = y' * a + (x')
$$

$$
d = x^* + b + y^* * (a - \left\lfloor \frac{a}{b} \right\rfloor * b) = y^* * a + (x^* - y^* * \left\lfloor \frac{a}{b} \right\rfloor) * b = x^* a + y^* b,
$$

are we denote

where we denote

Let *gcdext*(int *a*, int *b*, int &*d*, int &*x*, int &*y*) be a function that by input numbers *a* and *b* finds $d = GCD(a, b)$ and such *x*, *y* that $d = a * x + b * y$. To find the unknowns *x* and *y* its necessary to run recursively the function *gcdext*(*b*, *a* mod *b*, *d*, *x*, *y*) and recalculate the values *x* and *y* according to the formula above. The recursion terminates when $b = 0$. If $b = 0$, then $GCD(a, 0) = a$ and $a = a * 1 + 0 * 0$, therefore we set $x = 1$, *y* $= 0.$

Consider the third test case. The GCD(5, 3) calculation and finding the corresponding values of *x* and *y* are given in the table:

From the table we find that $GCD(5, 3) = 5 * (-1) + 3 * 2 = 1$.

Find the solution to equation $5x + 7y = 1$.

The answer is: $GCD(5, 7) = 5 * 3 + 7 * (-2) = 1$.

Function *gcdext* by the given *a* and *b* finds such values *x*, *y*, *d*, that $ax + by = d$ using the *extended Euclidean algorithm*.

```
void gcdext(int a, int b, int &d, int &x, int &y)
{
 if (b == 0)
  {
   d = a; x = 1; y = 0; return;
   }
 qcdext(b, a \text{ s } b, d, x, y);int s = y;y = x - (a / b) * y;x = s;}
```
The main part of the program. Process multiple test cases. Read the input data.

while(scanf("%d %d", $\&a, \&b)$ == 2) {

Call the function *gcdext* and print the answer.

 $qcdext(a,b,d,x,y);$ printf("%d %d %d\n", x, y, d); }

E-OLYMP [563. Simple equation](https://www.e-olymp.com/en/problems/563) Peter found in a book a simple mathematical equation: $a^*x + b^*y = 1$. His interest is only integral solutions of this equation, and only those for which $x \ge 0$ and *x* is the smallest possible.

► Given the values of *a* and *b*, using the extended Euclidean algorithm, we find *d* $=$ GCD(*a*, *b*), x_0 and y_0 such that $a^*x_0 + b^*y_0 = d$. Since the equation $a^*x + b^*y = 1$ is being solved, there is no solution for $d > 1$.

Theorem. All solutions of the Diophantine equation $a^*x + b^*y = 1$ are given with the formula

$$
\begin{cases} x = x_0 + kb \\ y = y_0 - ka \end{cases}
$$

where (x_0, y_0) is a partial solution of the original equation, $k \in \mathbb{Z}$. Substitute the pair $(x_0 + kb, y_0 - ka)$ into the equation $a^*x + b^*y = 1$: $a^*(x_0 + kb) + b^*(y_0 - ka) = 1$, $ax_0 + akb + by_0 - bka = 1$, $ax_0 + by_0 = 1$, which is true

In order for *x* to be the smallest possible non-negative value, it is necessary that *k* be the smallest for which $x_0 + kb \ge 0$. Or $k \ge -x_0/b$. The smallest integer *k* that satisfies the last inequality is $k = \begin{bmatrix} -x_0/b \end{bmatrix}$. For this value of *k* the solution should be found and printed.

Since the extended Euclidean algorithm finds a solution (x_0, y_0) for which the sum $|x_0| + |y_0|$ is minimal, then for $x_0 < 0$ the desired solution (with the smallest non-negative value of x) equals to

$$
\begin{cases} x = x_0 + b \\ y = y_0 - a \end{cases}
$$

If the inequality $x_0 \ge 0$ is satisfied in a partial solution (x_0, y_0) , then it will itself be a solution to the problem.

Find the partial solution of equation $7x + 11y = 1$ with the smallest possible nonnegative value of *x*. After running the extended Euclidean algorithm, we get a partial solution $x_0 = -3$, $y_0 = 2$. Really,

$$
7x_0 + 11y_0 = 7 * (-3) + 11 * 2 = 1
$$

Then $k = [-x_0/b] = [-(-3)/11] = 1$. The desired solution to the equation will be

$$
\begin{cases} x = x_0 + kb = -3 + 1 \cdot 11 = 8 \\ y = y_0 - ka = 2 - 1 \cdot 7 = -5 \end{cases}
$$

Test: $7 * 8 + 11 * (-5) = 56 - 55 = 1$.

E-OLYMP [1565. Play with floor and ceil](https://www.e-olymp.com/en/problems/1565) Theorem. For any two integers *x* and *k* there exists two more integers *p* and *q* such that

$$
x = p \left\lfloor \frac{x}{k} \right\rfloor + q \left\lceil \frac{x}{k} \right\rceil
$$

It's a fairly easy task to prove this theorem, so we'd not ask you to do that. We'd ask for something even easier! Given the values of *x* and **, you'd only need to find integers *p* and *q* that satisfies the given equation.

► If *x* is divisible by *k*, then $\lfloor x/k \rfloor = \lceil x/k \rceil = x / k$. Choosing $p = 0$, $q = k$, we get: 0 * $(x/k) + k$ * $(x/k) = x$.

Let *x* is not divisible by *k*. If $n = \lfloor x/k \rfloor$, then $m = \lceil x/k \rceil = n + 1$. Since GCD(*n*, *m*) $=$ GCD $(n, n + 1) = 1$, then based on the extended Euclidean algorithm, there exist integers *t* and *u* such that $1 = tn + um$. Multiplying the equality by *x*, we get $x = xtn +$ *xum*, wherefrom $p = xt$, $q = xu$.

In the first test case $x = 5$, $k = 2$. The value of x is not divisible by k. Compute $n =$ $[5/2] = 2$, $m = [5/2] = 3$. The solution to the equation $2t + 3u = 1$ is the pair $(t, u) = (-1, 1)$ 1). Multiply the equation by $x = 5$. The solution to the equation $2p + 3q = 5$ is the pair $(p, q) = (5t, 5u) = (-5, 5)$. The next relation holds:

 $5 = (-5) * [5/2] + 5 * [5/2] = (-5) * 2 + 5 * 3 = -10 + 15$

E-OLYMP [5213. Inverse](https://www.e-olymp.com/en/problems/563) Prime number *n* is given. The **inverse** number to i ($1 \leq i$) $\langle n \rangle$ is such number *j* that $i * j = 1 \pmod{n}$. Its possible to prove that for each *i* exists only one inverse.

For all possible values of *i* find the inverse numbers.

► The *inverse* can be found using the *extended Euclidean algorithm*. Let the the modulo equation should be solved: $ax = 1 \pmod{n}$. Consider the equation

$$
ax + ny = 1
$$

and find its partial solution (x_0, y_0) using the extended Euclidean algorithm. Taking the equation $ax_0 + ny_0 = 1$ modulo *n*, we get $ax_0 = 1$ (mod *n*). If x_0 is negative, add *n* to it. So $x_0 = a^{-1} \pmod{n}$ is the inverse for *a*.